История развития астрономии: небольшой доклад

Использование экваториальной системы координат

В этой системе, как и в
первой экваториальной плоскости, основной плоскостью является плоскость
небесного экватора, а одной координатой — склонение β (реже полярное расстояние
p). Другая координата — прямое восхождение α.

Прямое восхождение (RA,α)
светильника называется дугой небесного экватора от весеннего равноденствия к
кругу склонения светильника или углом между направлением весеннего
равноденствия и плоскостью круга склонения светильника. Прямые восхождения
считаются от 0° до 360° (градусов) или от 0h до 24h (часов) в направлении,
противоположном суточному вращению небесной сферы.

РА — астрономический
эквивалент длины Земли. И РА, и долгота измеряют угол восток-запад вдоль
экватора; оба измеряют от нуля на экваторе. Для долготы ноль — нулевой
меридиан; для РА ноль — точка на небе, где Солнце пересекает небесный экватор в
момент весеннего равноденствия.

В астрономии склонение (δ)
является одной из двух экваториальных координат. Она равна угловому расстоянию
в небесной сфере от плоскости небесного экватора до светящейся и обычно
выражается в градусах, минутах и секундах дуги. Склонение положительное от
небесного экватора к северу и отрицательное к югу.

Объект на небесном экваторе
имеет наклон 0°.

Склонение северного полюса
небесной сферы составляет +90°.

Южное склонение -90.

Склонение всегда дается со
знаком, даже если склонение положительное. Склонение небесного объекта,
пересекающего зенит, равно широте наблюдателя (если считать северную широту со
знаком + и южную широту со знаком минус). В северном полушарии Земли для
заданной широты φ небесные объекты с наклоном δ > 90° — φ не выходят за
горизонт, поэтому их называют неслучайными. Если склонение объекта δ < -90°
+ φ, то объект называется выше горизонта, поэтому на широте φ его не
наблюдается.

Средние века

На смену любопытных греков, римлян и египтян пришли варвары и мусульмане, которые опосредованно вызвали деградацию науки в средние века.

В Европе наука была фактически уничтожена религией. Но полностью не заставишь людей перестать думать. И все равно находились исследователи и ученые. Они были вынуждены подгонять свои наблюдения под точку зрения, которой придерживалась церковь. Это ограничивало развитие, но оно все же шло.

Другое дело в исламских странах. Из-за удачного географического расположения, они не только отрезали Европу от древних цивилизаций, но и сами стали их преемниками.

Сначала наука просто переводила на арабский язык все то, что написали греки, египтяне, индусы и другие народности, которые ранее жили на этих территориях. А на основе их знаний развивали свои по математике, физике, астрономии и других.

Арабам мы обязаны первыми обсерваториями, созданием первой системы астрономических постоянных и инструментарию. Они достаточно точно просчитали многие расстояния и углы наклона, которые непрофессионалу мало что скажут. Но эти данные использовались вплоть до Нового времени.

Задачи астрономии

Как и любая другая наука, астрономия преследует свои цели и задачи.

Сейчас выделяют три главные задачи:
1) изучение положений и движения небесных тел, а также определение их форм и размеров;
2) изучение строения и структуры небесных тел;
3) исследование образования, развития и будущего небесных тел.

Раньше астрономия больше основывалась на философских взглядах. Теперь же, с развитием технологий это более точная наука. Безусловно, сегодня она тесно переплетается с математикой, физикой, химией и биологией. Несомненно, философия также не исключена из основ астрономии.

В чём состоит основная цель астрономии? Вероятно, что вы уже поняли её. Указанная нами фундаментальная наука нацелена на изучение и исследование явлений и объектов Вселенной. Разумеется, для того, чтобы понять саму суть Вселенной. Узнать структуру и особенности. Человечество мечтает постичь её тайны и загадки. Учёные пытаются объяснить, как всё образовалось. Более того, все хотят выяснить, что нас ждёт в будущем. Доискаться до истины и получить истинное представление о мире.

Благодаря астрономии мы уже многое узнали. В дальнейшем, можно с уверенностью сказать, нас ждёт еще много нового. Ведь прогресс не стоит на месте. Без сомнения, наука развивалась, развивается и будет развиваться.А пока, до скорых встреч!

Космические горы

Горы есть не только на Земле

Вечно извергающая лаву луна Юпитера Ио — самое вулканически активное тело в Солнечной системе. Она вращается всего в 400 000 километрах от своего пузатого, газообразного «папки» и мощные гравитационные силы пережевывают луну как жвачку.

Благодаря бесчисленным циклам гравитационного терзания, Ио теперь усеяна сернистыми гейзерами, адскими потоками лавы и зубчатывми горами. Эта сотня гор не похожа ни на какую другую в Солнечной системе: они существуют изолированно и торчат прямо из зыбкой поверхности спутника, в отличие от сгруппированных и покатых гор на других мирах.

Как показывает моделирование, сжимающие силы работают совместно с потоками лавы, чтобы произвести эти странные вертикальные горы. Поверхность Ио постоянно покрывается свежей лавы из ее 400 активных вулканов (что удивительно для тела размером с Луну), которые покрывают равнины спутника пятью дюймами расплавленной материи каждые десять лет.

Накопления пепла и лавы создают экстремальное давление, которое увеличивается с глубиной, благодаря сферической природе (большинства) лун. Когда напряжение становится невыносимым, земля раскалывается и выбрасывается массивный пик.

Задачи астрономии

Основные задачи астрономии заключаются:

1.      В изучении особенностей строения космических тел, выяснении их элементного состава и характерных физических свойств

2.      В выяснении природы происхождения определенных космических тел и систем, которые они образуют

3.      В получении более объемной информации о свойствах Вселенной, а также в проверке теорий основной ее части — Метагалактики.

Решение подобных вопросов требует разработки наиболее продуктивных способов исследования — практических и теоретических. Решением первой задачи способствует произведение длительных наблюдений, начало которым было положено еще в древние времена. К ним подключаются и законы механики, с помощью которых объясняется множество явлений, происходящих во Вселенной. На сегодняшний день ученые располагают достаточным количеством информации о Земле и приближенных к ней объектов: Солнца, Луны, планет и астероидов.

Решением второй задачи с недавнего времени стал спектральный анализ и возможность получения фотоснимков космических тел. Активно изучать физические свойства небесных объектов стали только во второй половине прошлого столетия. А возможность разрешения проблем подобного характера появилась только в последние годы.

Для решения третьей задачи необходимо достаточное количество информации, с помощью которой можно было бы разъяснить многие процессы формирования и эволюции большинства небесных тел. Но подобных знаний еще слишком мало, чтобы дать исчерпывающие ответы на многие интересующие вопросы. Именно поэтому развитие этой области происходит лишь с теоретической стороны, общепринятых мнений и принятия наиболее правдоподобных гипотез.

Решения четвертой задачи заключаются в подтверждении теоретических данных с помощью практики. Но на данный момент ученые не располагают достаточным количеством проверенной физической теории. Ведь она подразумевает описание разных физических характеристик космических тел, таких как: состояние их вещества, причины и следствия физических процессов на основе значений их показателей плотности, давления и температуры. В решением данной задачи могут помочь лишь данные, полученные путем реальных наблюдений областей Вселенной, в том числе и объектов, располагающихся в млрд-ах световых лет от Земли. Даже с задействованием современных методов и технологий, проводить изучение некоторых зон Вселенной все еще невозможно. Несмотря ни на что, на сегодняшний день эта задача является наиболее «интересной» для всех астрономов мира, которые активно работают над ее решением.

Галактическая система координат

В этой системе главной
плоскостью является плоскость нашей галактики. Одна координата — галактическая
широта b, а другая — галактическая долгота l.

Галактическая широта b лампы — это дуга галактической широты от эклиптики до лампы или угол между плоскостью галактического экватора и направлением лампы.

Галактические широты отсчитываются
от 0° до +90° до галактического северного полюса и от 0° до -90° до
галактического южного полюса.

Светимость галактического свечения — это дуга галактического экватора от точки отсчета С до светового круга галактической широты, или угол между направлением точки отсчета С и плоскостью светового круга галактической широты. Галактические долготы при взгляде с северного галактического полюса против часовой стрелки, т.е. к востоку от точки отсчета С в пределах от 0° до 360°.

Отправная точка C близка к направлению
Галактического центра, но не совпадает с ним, так как последний расположен
примерно в 1° южнее Галактического экватора из-за низкой возвышенности
Солнечной системы над плоскостью Галактического диска. Отправная точка С
выбрана таким образом, что пересечение галактического и небесного экватора с
прямым восхождением на 280° имеет галактическую долготу 32.93192° (эпоха 2000
года).

Координаты опорной точки С
для эпохи 2000 года в экваториальной системе координат составляют

Первая экваториальная система координат

В этой системе главной
плоскостью является плоскость небесного экватора. Одной из координат является
склонение δ (реже полярное расстояние p). Другая координата — часовой угол t.

Склонение δ светимости
называется дугой окружности склонения от небесного экватора к светимости, или
углом между плоскостью небесного экватора и направлением светимости. Отклонения
отсчитываются от 0° до +90° к северному полюсу мира и от 0° до -90° к южному
полюсу мира.

Полярное расстояние p
светимости называется дугой окружности склонения от северного полюса мира до светимости
или углом между осью мира и направлением светимости. Полярные расстояния
считаются от 0° до 180° от северного полюса до южного полюса мира.

Часовой угол t светильника — это дуга небесного экватора от высшей точки небесного экватора (т.е. точки пересечения небесного экватора с небесным меридианом) до окружности наклона светильника или двугранного угла между плоскостями небесного меридиана и окружностью наклона светильника. Часовые углы отсчитываются по отношению к суточному вращению небесной сферы, т.е. к западу от верхней точки небесного экватора, в пределах от 0° до 360° (в градусах) или от 0h до 24h (в часах). Иногда часовые углы отсчитываются от 0° до +180° (от 0ч до +12ч) на запад и от 0° до -180° (от 0ч до -12ч) на восток.

Звезды, которые издают звук

Некоторые звезды способны почти играть музыку

Астрономы выслеживают самые старые звезды в галактике, и недавно обновленный метод позволил им обнаружить древнюю группу звезд из первых дней Млечного Пути.

Исследование, проведенное школой физики и астрономии Университета Бирмингема, позволило заглянуть в сердца восьми пожилых звезд, проживающих в шаровом скоплении Messier 4 (M4) в каких-то 7200 световых годах от нас и услышать музыку внутри. Эти звезды намного старше, толще и краснее, чем Солнце, и (что самое удивительное) наполнены звуком. Эти «резонансные акустические колебания» возмущают звездную матрицу и вызывают крошечные, но обнаружимые изменения яркости.

Недавно изобретенная возможность измерять эти колебания породила поле астросейсмологии, еще один способ изучать звезды. Астрономы могут использовать эту технику для определения возраста и массы звезды. Эти колебания подтвердили теоретические расчеты и показали, что звездам M4 13 миллиардов лет. Это старейшие звезды в галактике.

Сообщение про Звезды

Звездами называют огромные раскаленные шары газа. Главными характеристиками являются излучение света благодаря протекающим внутри них термоядерным реакциям.

Образования звезд начинается в облаках из газа и пыли. Основными составляющими этих небесных тел обычно являются водород и гелий. Гравитационное сжатие помогает звездам сформироваться. Температура начинает расти почти с самого начала образования, и при достижении определенной отметки, формирование прекращается. Возраст колеблется от нескольких миллионов до миллиардов лет.

Ученые выделяют две главные характеристики у звезд – массу и состав. По этим параметрам можно выяснить оставшиеся характеристики.

Если звезда является частью двойной системы, то ее массу можно определить более или менее точно с использованием 3-его закона Кеплера. В других случаях массу можно определить через светимость.

Водород и гелий занимает большую часть состава, на все остальные элементы приходится несколько процентов. Термоядерные реакции проходят благодаря превращению водорода в гелий. Эти 2 компонента служат для звезды своеобразным топливом. Остальные составляющие влияют на скорость реакций, цвет и яркость звезды.

В строение звезд входят 3 компонента. Ядро занимает центр звезды и является местом, где проходят реакции. Второй зоной является конвективная зона. Название она получила из-за использования конвекции для переноса энергии. Еще одним компонентом является лучистая зона, переносящая энергию благодаря излучению фотонов. В зависимости от размера звезды после ядра может следовать лучистая зона.

У каждой звезды есть своя величина – ее яркость. Самые яркие звезды имеют самые маленькие значения. Звезда с величиной 1 в 10 раз ярче звезды с величиной 2. Ярчайшая звезда неба, Сириус, имеет величину -1,46. Звезды с величиной больше 8, без приборов не рассмотреть.

Температуру звезд можно определить по цвету. Самые горячие звезды мы видим сине-голубыми. Звезды с самой низкой температурой имеют красный цвет. По температуре звезды разделены на 6 классов.

Классифицируют звезды на 14 классов. Учитывают при этом параметры их величины, размера, массы, химического состава и переменности блеска. Самым многочисленным классом является класс звезд главной последовательности.

Звездные системы содержат 4 класса. Они могут иметь двойную, тройную и большую кратность, могут быть одиночными. Самые распространенными системами являются двойные системы.

2, 4, 11  класс

Астрономия в древнем мире

Звучит как тема доклада, нет? Или школьной презентации. В древности наука была не слишком абстрактна. Люди видели, что есть смена дня и ночи, смена фаз луны, влияние луны на Землю, времена года.

Обыденные для нас вещи, которые тоже надо было заметить, осознать и привести к общему пониманию. Люди обозначили день, ночь, сутки, месяц и год

Примерно, конечно, но это было важно для развития науки дальше

В то же время зародилась астрология. Смотрите, что случилось. Человек наблюдает за небом. На нем есть звезды, которые из ночи в ночь неподвижны или предсказуемо меняют свое положение. И появляются новые тела.

Одни «звезды» ходят по небу не так, как другие. Иные – появляются и исчезают. Почему же древние боги решили сделать часть звезд постоянными, а часть – переменными? Наверное, эта комета о чем-то нас предупреждает. До сих пор кометы для многих – предвестник то беды, то небывалого счастья.

До телескопа было далеко, но простые измерительные приборы, используемые и геодезистами, люди использовали. Тогда изобрели солнечные часы и другие способы измерять время и дни.

Астрономические открытия есть у каждой древней цивилизации, от Китая и до Египта. В основном приходили к одним выводам примерно в одно время, так что выделить кого-то сложно.

Ну максимум вавилонян, они придумали 7-дневную неделю, мы ей до сих пор пользуемся. Длина года разнилась и не соответствовала современной, хотя многие пришли к относительно верной цифре, например китайцы и египтяне.

Темы исследовательских работ и проектов о Солнце

  • В ритме Солнца
  • Взаимодействие Солнца и Земли
  • Влияние активности Солнца на некоторые аспекты жизнедеятельности человека
  • Влияние солнечной активности на Землю
  • Влияние солнечной активности на некоторые аспекты жизнедеятельности человека
  • Влияние солнечной активности на человека
  • Закат солнца
  • Затмения солнечные
  • Звезда по имени Солнце
  • Изучение солнечной активности и параметров Солнца по данным спутника Коронас–Фотон
  • Интересные факты из жизни Солнца
  • Исследование движения солнечных пятен
  • Исследование энергии Солнца
  • Солнце — ближайшая к нам звезда
  • Магнитные бури и их влияние на здоровье человека и успеваемость школьников
  • Почему солнце называют звездой?
  • Прошлое, настоящее и будущее Солнца
  • Пусть всегда будет Солнце!
  • Самое интересное о Солнце
  • Солнечная активность и её влияние на здоровье человека.
  • Солнце. Влияние Солнца на жизнь Земли.
  • Солнечное затмение
  • Солнечное затмение и изменение погодных условий
  • Солнце и его влияние на окружающий мир
  • Солнце – двойная звезда?
  • Солнце: строение и влияние на Землю
  • Солнце – источник жизни. Современное состояние проблемы
  • Солнце. Что мы знаем о нём?
  • Солнце – источник жизни на Земле
  • Солнечные часы
  • Солнечный зайчик — что это?
  • Тайны Солнца
  • Эхо солнечных бурь.

Астрофизические параметры Млечного Пути

Для того чтобы представить, как выглядит Млечный Путь в масштабах космоса, достаточно взглянуть на саму Вселенную и сравнить отдельные ее части. Наша галактика входит в подгруппу, которая в свою очередь является частью Местной группы, более крупного образования. Здесь наш космический мегаполис соседствует с галактиками Андромеда и Треугольника. Окружение троице составляют более 40 мелких галактик. Местная группа уже входит в состав еще более крупного образования и является частью сверхскопления Девы. Некоторые утверждают, что это только приблизительные предположения о том, где находится наша галактика. Масштабы образований настолько огромны, что все это представить практически невозможно. Сегодня мы знаем расстояние до ближайших соседствующих галактик. Другие объекты глубокого космоса находятся за пределами видимости. Только теоретически и математически допускается их существование.

Что касается обозримого мира, то сегодня имеется достаточно информации о том, как выглядит наша галактика. Существующая модель, а вместе с ней и карта Млечного Пути, составлена на основании математических расчетов, данных полученных в результате астрофизических наблюдений. Каждое космическое тело или фрагмент галактики занимает свое место. Это, как и во Вселенной, только в меньшем масштабе. Интересны астрофизические параметры нашего космического мегаполиса, а они впечатляют.

https://youtube.com/watch?v=QUmLohLA0uM

Наша галактика спирального типа с перемычкой, которую на звездных картах обозначают индексом SBbc. Диаметр галактического диска Млечного Пути составляет порядка 50-90 тысяч световых лет или 30 тысяч парсек. Для сравнения радиус галактики Андромеды равен 110 тыс. световых лет в масштабах Вселенной. Можно только представить насколько больше Млечного Пути наша соседка. Размеры же ближайших к Млечному Пути карликовых галактик в десятки раз меньше параметров нашей галактики. Магеллановы облака имеют диаметр всего 7-10 тыс. световых лет. В этом огромном звездном круговороте насчитывается порядка 200-400 миллиардов звезд. Эти звезды собраны в скопления и туманности. Значительная ее часть – это рукава Млечного Пути, в одном из которых находится наша солнечная система.

Все остальное — это темная материя, облака космического газа и пузыри, которые заполняют межзвездное пространство. Чем ближе к центру галактики, тем больше звезд, тем теснее становится космическое пространство. Наше Солнце располагается в области космоса, состоящем из более мелких космических объектов, находящихся на значительном расстоянии друг от друга.

Масса Млечного Пути составляет 6х1042 кг, что в триллионы раз больше массы нашего Солнца. Практически все звезды, населяющие нашу звездную страну, расположены в плоскости одного диска, толщина которого составляет по разным оценкам 1000 световых лет. Узнать точную массу нашей галактики не представляется возможным, так как большая часть видимого спектра звезд, скрыта от нас рукавами Млечного Пути. К тому же неизвестна масса темной материи, которая занимает огромные межзвездные пространства.

Центр галактики имеет диаметр 1000 парсек и состоит из ядра с интересной последовательностью. Центр ядра имеет форму выпуклости, в которой сосредоточены крупнейшие звезды и скопление раскаленных газов. Именно эта область выделяет огромное количество энергии, которая по совокупности больше, чем излучают миллиарды звезд, входящие в состав галактики. Эта часть ядра самая активная и самая яркая часть галактики. По краям ядра имеется перемычка, которая является началом рукавов нашей галактики. Такой мостик возникает в результате колоссальной силы гравитации, вызванной стремительной скоростью вращения самой галактики.

Рассматривая центральную часть галактики, парадоксальным выглядит следующий факт. Ученые долгое время не могли понять, что находится в центре Млечного Пути. Оказывается, в самом центре звездной страны под названием Млечный Путь устроилась сверхмассивная черная дыра, диаметр которой составляет порядка 140 км. Именно туда и уходит большая часть энергии, выделяемой ядром галактики, именно в этой бездонной бездне растворяются и умирают звезды. Присутствие черной дыры в центре Млечного Пути свидетельствует о том, что все процессы образования во Вселенной, должны когда-то закончиться. Материя превратится в антиматерию и все повторится снова. Как будет себя вести это чудовище через миллионы и миллиарды лет, черная бездна молчит, что указывает на то, что процессы поглощения материи только набирают силу.

Новый тип экзосистемы

Ученые поняли, что обнаружили самую большую солнечную систему, известную на сегодняшний день

Когда астрономы открыли планету 2MASS J2126-814, она была похожа на мир, существующий совершенно отдельно, сам по себе. Эта планета, блуждающий газовый гигант в 12-14 раз массивнее Юпитера, обречена вечно слоняться по космическим просторам в поисках солнца, которое сможет назвать своим.

Но у этой истории счастливый конец. Астрономы нашли другой объект, следующий за отверженной планетой, красный карлик по имени TYC 9486-927-1. Оба тела в 100 световых годах от Земли и, похоже, движутся вместе — выходит, планета вовсе не одинока.

Родительская звезда расположилась в 1 000 000 000 000 километрах от планеты. Каково это — представьте себе формы жизни, которые вглядываются в ночное небо и не могут отличить собственную звезду от других подобных точек на небосводе.

2MASS J2126-8140 вращается на орбите в 140 раз больше орбиту Плутона, который находится в 6 миллиардах километрах от Солнца. Такое положение не могло бы вылиться из традиционного метода рождения солнечной системы в процессе коллапса диска, и ученые считают, что эти два тела появились из одной гигантской струйки межгалактического газа.

Классификация звезд

Они различны по размеру, цвету и яркости. Звезды – это небесные тела (раскаленные газовые шары), ночью видимые как светящиеся точки. В отличие от планет и их спутников, звезды излучают собственный свет, цвет которого зависит от температуры звезды. Самые холодные (умирающие) – красные звезды (рис. 2).

Рис. 2. Красная звезда ()

Горячие – желтые звезды, как, например, наше Солнце (рис. 3).

Рис. 3. Желтая звезда ()

Температурой поверхности более 10 тысяч градусов тепла обладают белые звезды (рис. 4).

Рис. 4. Две белые звезды ()

Голубые звезды – самые яркие, их температура около 30 тысяч градусов тепла (рис. 5).

Рис. 5. Голубая звезда ()

Есть звезды, в тысячу раз превосходящие Солнце по размеру и массе, а есть в несколько раз меньше нашей планеты.

Солнце сияет на небе ярче других звезд, потому что находится к Земле ближе остальных.

За 8 минут 20 секунд свет Солнца достигает поверхности Земли. А есть звезды, свет от которых добирается до нашей планеты за тысячи лет.

Астрономия и выживание человечества

Одной из причин, почему астрономия очень важна и сейчас такова — она помогает нам подготовиться к любым опасным явлениям, возникающим в космосе. Мы даже создали каталог небесных тел, которые могут столкнуться с нашей планетой.

Астрономическая наука помогает лучше понять нам нашу планету, а также условия на Земле. Более того, мы постоянно следим за планетами, которые существуют в космосе. Они могут помочь сохранить нашу цивилизацию в будущем. Без астрономии это вряд ли было бы возможно.

Чтобы больше узнать о Вселенной, мы продолжаем инвестировать в космические исследования. Многие технологические разработки необходимы для того, чтобы эти исследования были успешными. Эти новые технологии приводят к инновациям, которые полезны для разных отраслей человеческой деятельности.

Загадочное шаровое скопление

Ученые обнаружили шаровые скопления звезд

Наш Млечный Путь большой, но имеет всего 150 скоплений в своем распоряжений. Более массивные галактики привлекают больше скоплений, а ближайший галактический монстр — Центавр А (NGC 5128), эллиптическая галактика в 12 миллионах световых лет от нас, имеет 2000 шаровых прихлебателей.

Но интересны далеко не все скопления Центавра А. Как правило, масса скопления соизмерима с его яркостью, и самые яркие источники также являются самыми массивными. Но в процессе изучения 125 скоплений в Центавре А астрономы обнаружили, что некоторые обладают куда большей массой, чем мы видим.

Ученые предложили два одинаково любопытных решения: темная материя или черные дыры. Шаровые скопления не так часто содержат темную материю, в отличие от галактик, но эти несколько, возможно, с помощью непонятного механизма ее получили. Черные дыры также достаточно массивны, чтобы произвести наблюдаемый эффект. Если это так, Центавр А становится космическим минным полем с жуткими прожорливыми черными дырами на периферии.

«Небесное око» в Китае

Фото: Ou Dongqu/Xinhua/ZUMA

Сферический телескоп FAST — один новейших инструментов исследования космического пространства. Это совместный проект Национальной астрономической обсерватории Китая (NAOC) и программы российского предпринимателя Юрия Мильнера Breakthrough Initiatives. Концепцию радиотелескопа начали разрабатывать еще в 1994 году, а построить и запустить его удалось только в 2016-м.

Поиски подходящего места для строительства заняли десять лет, так как для сооружения нужна была местность, похожая на естественный кратер. Правительство Китая переселило 65 жителей деревни во впадине Даводанг в провинции Гуйчжоу и еще 9 110 человек в радиусе пяти километров от расположения телескопа, чтобы очистить пространство и создать зону радиомолчания.

Диаметр телескопа составляет полкилометра (около 30 футбольных полей), а глубина — 140 м. Он состоит из 4 450 маленьких двигающихся треугольных панелей, которые позволяют проводить наблюдения с разных углов. Во время работы телескоп «ловит» радиоволны, которые издают объекты в космическом пространстве. Из-за своего размера FAST может собирать сигналы из дальних уголков космоса. Исследователи говорят, что во время тестового запуска телескоп обнаружил радиоволны трех быстровращающихся звезд.

Разработчики уверены, что телескоп может помочь в поиске гравитационных волн и исследовать мимолетные звуковые вспышки мертвых звезд. Уже в августе 2021 года FAST станет исследовательской платформой для астрономов со всего мира.

Современная космонавтика и ее достижения

Огромный прорыв сделала современная космонавтика в своем развитии. Сегодня о космосе говорится как о реальном, а не как о чем-то сказочно далеком. Запуск современного космического корабля, полеты в космическое пространство стали хоть и дорогостоящими, но обычными явлениями в жизни российского государства.

Не вызывает ни у кого удивления космический туризм, когда за определенную плату можно полетать на космическом корабле. На высоком уровне проходят космические исследования. Современные ученые работают над созданием солнечных электростанций, разрабатывают технологи влияния на климат Земли.

С 2016 года начал свою работу космодром «Восточный» в Амурской области. Это позволило России совершать запуски космических кораблей со своей территории и не зависеть от других стран.

 

В недалеком будущем в планах запуск пилотируемых кораблей на поверхность Луны, беспилотных космических аппаратов для исследований космического пространства, реализация программы «Морской старт».

Приоритетной задачей для России стало дальнейшее развитие отечественной космонавтики, изучение возможностей современной космической отрасли и выведение ее на передовые мировые рубежи.

Заключение

Знание о звездном небе является
неотъемлемой частью мировой культуры и затрагивает многие, порой совершенно
разные области человеческой деятельности — от собственно астрономии до истории
искусств.

На возникновение общественной
жизни влияли не только климатические, но и астрономические факторы —
периодически наблюдаемые небесные явления. Последнее, как естественные
индикаторы сезонных климатических изменений, стало основой
религиозно-культурных систем, которые, в свою очередь, сформировали
идеологическую основу общественного строя. Связь небесных явлений с погодой в
коллективном сознании людей древности возвела первое в ранг сверхъестественного
божественного закона, который определял жизнь природы и общества. Толкователи
этого закона играли организующую роль в обществе, так как их знания делали их
проводниками воли обожествленных небесных светильников. И именно эти люди
задумывались о природных явлениях на доступном им уровне и формировали
соответствующую картину мира.

Образ мира на определенном
этапе развития содержит обобщенное, целостное представление о людях
соответствующей эпохи об их месте в окружающем мире. Она может рассматриваться
как ключевая особенность эпохи и находит специфическое отражение в структуре и
символике звездной диаграммы.

На этой основе логично
выделить шесть основных этапов развития научного мировоззрения: I —
преантропоцентризм, II — антропоцентризм, III — топоцентризм, IV — геоцентризм,
V — гелиоцентризм и полицентризм, VI — современный этап, т.е. отказ от любого
центризма. Каждый из этих этапов соответствует определенному типу небесной
карты. Хронология создания звёздных карт, ключевые термины, исторические реалии
и имена также удобно сгруппированы в шесть пунктов. Следует отметить, что эпохи
I и II относятся к предписанному периоду истории, поэтому звездная карта могла
быть зафиксирована только в устной традиции и материальных памятниках
индоевропейской культуры VI — IV тыс. до н.э., в объектах неолита и
субпалеолита.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector